International Journal of Scientific & Engineering Research, Volumel1l, Issue3, March-2020 1201

ISSN 2229-5518

Simple and Better Approach to Analysis of Plates
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Abstract— this paper presents a new, simple and better approach to analyze thin rectangular plates with large deflection. This fit is achieved
by circumventing the use of Airy's stress function. It was possible to circumvent the Airy’s stress function solving the Von-Karman strain-
displacement equation in closed form. The resulting non-linear strain-deflection equations were substituted into the constative equations to
obtain the non-linear stress-deflection equations. These stresses and strains were used to obtain the total potential energy functional of a
rectangular plate with large deflection. This functional was minimized with respect to displacement to obtain one governing equation and two
compatibility equations, which were solved to obtain the in-plane displacements in terms of deflection. The energy functional was again
minimized with respect to the coefficient of deflection to obtain the various formula for analyzing the plate with large deflection. The values
of load parameters calculated were compared with those obtained by Levy and the recorded maximum percentage difference is 2.39%. This
validates the present method. From the results, it is concluded that for ratios of deflection-to-thickness (w/t) of the plate less than 0.35 small
deflection theory can be used with up to 90% accuracy level. When wi/t is up to or more than 0.35 large deflection theory is recommended
for accuracy.

Index Terms— Airy's stress functions, Von-Karman, strain-displacement, stress-displacement, total potential energy functional, minimize,
load parameter.

__________ ¢ —————————_
NOTATIONS T Shear stress of the plate
A Area of thin plate Txy Shear stress on x-y plane
a Length of the primary dimension of the plate IT Total potential energy of the plate
b Length of the secondary dimension of the plate B Aspect ratio thatis, P=b/a
h Shape (profile) function R =x/a
u Displacement of plate in x -direction Q =y/b
% Displacement of plate in y -direction S =z/t
Vix External axial work
Exxm Middle surface strain component in x-direction
€ym Middle surface strain component in y-direction

Deflection coefficient
y Shear strain of the plate
Yy Shear strain on x-y plane
D Flexural rigidity of the plate
E Young modulus of elasticity of isotropic plate
S Non dimension axis (quantity) parallel to z axis
V4 Cross section modulus
Exx Strain component in x-direction
Eyy Strain component in y-direction
M Moment
R Non dimension axis (quantity) parallel to x axis
Q Non dimension axis (quantity) parallel to y axis
Ob Bending stress
t Thickness of the plate
cl Unknown constant
Nx Inplane force of a plate perpendicular to x-direction
Un Membrane strain energy
Vo Middle surface displacement of plate in y-direction
q Lateral load on plate
Om Membrane stress
Ox Normal stresses acting in x directions
w Displacement of plate in z-direction
Uo Middle surface displacement of plate in x-direction
oy Normal stresses acting in y directions
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1 INTRODUCTION

Razdolsky[l] stated it clearly that analytical solution of von
Karman nonlinear equations is unattainable. This stand is

corroborated by Zhang et al. [7] and Rezaiee-Pajand and
Estiri [10]. Von-Karman type of nonlinear strain-displacement
relation “[9]” governs most works on analyses of rectangular
plate with large deflection. This Von-Karman type of strain-dis-
placement relation is made of two parts: Linear part (Kirch-
hoff’s strain-displacement, taken herein as bending strain-dis-
placement) and the non-linear part (membrane strain-displace-
ment). The plane Von-Karman strain-displacements relations
“[9], [12]” are:

ou 2w [10w\*  du,
i e li(a) +a} @
v 2w [10w\* dv,
=gy T oyt lz(a) W} @
du dv
Yay = @ +&

_ a*w +[(@W)(@W)+6u0+6vo] .
- Z(’ixdy dx/ \dy dy  0x )

Difficulty encountered in handling the membrane part of the
Von-Karman strain-displacement constitutes the problem of
analysis of plates with large deflection. This problem is mainly
resting on obtaining mathematical expressions for the mem-
brane in-plane displacements ugand vo.

Earlier works on analyses of rectangular plate with large deflec-
tion assume expressions for uo and vo. This makes their final re-
sults not to be taken as exact results [14], [8], [3], [2], [4], [16],
and [5]. In the process of solving the Von-Karman equations,
stress function (usually reffered to as Airy’s stress function) is
used. As in the case of in-plane membrane displacement, earlier
scholars usually assume expression for the Airy’s stress func-
tion, which renders the results from their approximate [8], [4],
and [5]. Determination of exact expression for the Airy’s stress
function seems intractable. However, Oguaghamba [11], Ono-
dagu [13] and Enem [6] in the PhD works determined polyno-
mial expressions for Airy’s stress function. They accomplished
this fit by integrating the governing equation and compatibility
equation of the plate. However, the expressions for Airy’s stress
functions determined by these scholars are quite lengthy and
encompassing. Mere looking at these expressions can discour-
age an analyst.

These problems adduced herein is the propelling factor for the
present research. The tacit for this research is “can Von-Karman
strain - displacement relations be used in the analysis rectan-
gular plates with large deflection without using or introducing
Airy’s stress function?” This means circumvention of Airy’s
stress function in the analysis of rectangular plates with large
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deflection.

2.1 Membrane in-plane displacements

The membrane strain -displacement of rectangular plate with
large deflection is obtained from “(1),” “(2),” and “(3),”. They are
the terms in the square brackets: numbe:

1/0w\® g
Exom = _(_) +——

2\dx dx

1 (6W)2 _
&y =55y + % ()

0y
Minimizing “(4),” and “(5),” with respect to (:—x) and (%)

(4)

respectively gives:
a('?xxm) _ 1 N a

0(6) "2 a(i)[(%)z*wz%ﬁ[%w”]

0x 0x 0x
1w ,
= EW +uy =10 (6)
d(e i 2 ;
(Eygm) — 1 " Ld I(i) «w?| + da i . UU]
B ]
dy dy dy
10w?
= EW + Vp = (7)
Rearranging “(6),”and “(7),” gives:
1 dw?
=TT ®
1 dw?
Vg = _EW (C))

The coefficients of ug and vo (in equations 8 and 9) that makes
the membrane strains (equations 4 and 5) zero is minus half.
Hence, to avoid zero membrane strains (which violets the basic
assumption of large deflection theory) other constants that are
not minus half is used. However, it shall be pertinent to opti-
mize the constant. This optimum value of the constant will en-
able the plate carry loads with its membrane strength when it
looses its bending strength. This optimum value of the constant
was obtained by Ibearugbulem [12] in his unpublished class
note. Following his work, the minus half in “(8),” and “(9),” are
replaced with unknown constant c; as:

ow?

Uy = ClE (10)
ow?

170 — Cl a_ (11)

Substituting “(7),” and “(8),” into “(4),” and “(5),” gives:

1 /0w 2 w2 w2

cen =3 (57) +(55) =% (55) (12)
1 70wy\? w2 w2

Eym = a(a) ta (a) = (@) (13)
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Where: ¢, =¢ + 7 (14)
common definition of bending stress is:
_2 15
I =7 (15)

M and Z are moment and cross section modulus (first moment
of area) respectively. Cross section modulus of a rectangular
cross section is bt2/6. Where b and t are the width and thickness
of the section respectively. Substituting this into equation 15
gives:
6M _
7= (16)
Consider the moment of a continuum by in-plane load and
deflection shown on Figure 1.

Figure 1:A deflected continuum from inplane force

From Figure 1, moment is given as:

M =n.t = (N,bt)t = N,bt? 17)
Substituting equation 17 into equation 16 gives:
6N,.bt?
Oy =— 7 = olx (18)

During large deflection, the plate can lose its bending strength
and rely only on membrane strength. At this point, the entire
bending stress, ob» transforms to membrane stress, om. that is
equation 18 becomes the membrane stress equation:

Oz = 6Ny (19)
Membrane strain energy is obtained using the membrane strain
and membrane stress, “(12),” and “(19),” gives:

1
Um = Ef J. f Exam Tmx dxdydz
1 ow\?
_Ef f f Cy (a) X 6N, dxdydz.

That is:
N"fff(aw)zd dyd
ox) XY

6C;
At any arbitrary point on the continuum, the external axial
work is given as:

=

Subtracting “(21),” from “(20),” and minimizing the resulting
functional with respect to deflection (w) gives:
1 : /

(20)

dxdydz

&= 5 (22)
Substituting “(22),” into “(14),” and rearranging gives:
1
G = _§ (23)

Substituting “(23),” into “(10),” and “(11),” gives:
10w? 24)
Uy = ————
0 3 ox
_ low? 55
Vo = 3 0y (25)

2.2 Displacements and nonlinear kinematics of rectangular
plates with large deflection

Substituting “(24)” and “(25)” into ”(1)” and”(2)” gives:
du 2w 10w\’ _
b S ox T Mo (Ox) (26)
v *w 1 dw
Eyy:@:—zd?-Fg(@) (27)

6u+6v ) 0*w +1(6W) (OW)
yxy_(}y ax de@y 3\ax/\ay

o[ T ) o

Integrating “(26),” and “(27),”
tively gives:

with respect to x and y respec-

ow 10w?
u= —Za EW (29)
ow 10dw?
v=— @ aF EW (30)

2.3 Constitutive relations of rectangular plates with large
deflection

The constitutive relations of a rectangular plate with plane
stress assumption are:

E
Tpx = m(gxx + ,',lEyy)

Oyy = (1—12) (-“‘?xx + Syy)
B E - ,u) 33
o =o' = 2(1 2y = (33)

Substituting “(26),” “(27),” and “(28),” into “(31),” “(32),” and
“(33),” gives the stress-deflection relations:

_E a%w 2%w
oo = gy o[ 1551
w2
2l

(31)

(32)

axz TH ay?
1[0w\?
+=l(5) +u

E 2 az(‘
et
u

(34)

ax2

1
w513 )
E(1- u) 0w
Fey = (1- 2) Z@x@y

£l (3)

@W)2
Y

) (35)

(36)
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2.4 Total potential energy functional of rectangular plate with
large deflection

The total potential energy functional of a classical rectangular
plate in pure bending is given as:

! =_ffj(0xx Eax Oy Eyy + Ty Yy ) dx . dy . dz

——qf wdx dy (37)

Substituting the stress-deflection relations “(34),” “(35),” and
“(36),” and strain-deflection relations “(26),” “(27),” and “(28),”
into “(37),” and carrying out the closed domain integration with
respect to z coordinate gives:

S G )]
o [CORRIEORCORIEN

2
—qu}dx.dy

(38)

B 12
T2a-w)y 9 %
12(1 — p2) t
Writing equation 38 in terms of the non-dimensional coordi-
nates (R = x/a and Q =y/b, S = z/t, where: a and b are plate
lengths along x and y-axes) in closed domain gives:

2 f{liy —(—>—(—)]
|G G 6

4

1 own* qa

Where: D = (39)

Without loss of generality,” (40a)” is rewritten as:
d® dw?* 1 d® dw?
dR® dR T B dRd0® dR

11
_ bD fJ’
2a®
0o 0
1 d3 dw2 1 ds
ﬂ4dQ3
g | 92 fow?
+ ===
36 [6RZ\ AR

+,82dR2dQ dQ
1 a [fow? a fow?
+§ﬁ(ﬁ)%(ﬁ)
Lo _awz ’ an“ dR d 40b
+,e—4a—w(aq) T2TpwidRde - (40b)
1

d? 1 ad 1 d3
f -3 e Uy +E—deQz Ug +E—dR2dQ Up
0
1 d?
WVEETE ”
9g| a? , 149 ad
36[0r2" TEaR "0 ag Y

19 ga*
+F602U0 —ZTW dR dQ (40c)

Substituting “(24),” and “(25),” into “(40b),” gives:

I

N s
2

L1
S

2.5 Governing and compatibility equations of rectangular
plate with large deflection

Minimization of the total energy functional with respect to de-
flection, w gives the governing equation. Minimizing the total
energy functional with respect to in-plane displacements uo and
vo gives the compatibility equations along x and y axes respec-
tively. Minimizing equation 40a with respect w gives:

Rearranging “(41a),” gives the governing equation:
11
an  bD d*w 4 d*w 2 d*w
a:ﬁ”{[zmw—z—mdqz +Fd_o4]
0 g [ a*w? 8 o*w? 4 9*w?3
+£[4 JR* T BzdRzdgz T Bt 6(24]

qa*
—sz dRdQ =0 (41a)
11
_ bD a*w 1 d*w
%‘?J[ aR? ﬁzaRZdQZ TEaee
00
g [ 9*w ow? 4 93w [ow?
e L e [ e
36| aR®\ aR ) ' B2ARAQ?\ OR
+ 4 3w [ow? N 4 9%w [ow?
B?dR?aQ\'9Q ) " p*0Q*\ 9@
qa*
~2--w{dRdQ =0 (41b)
Minimizing “(40c),” with respect to up gives:
11
_bD 1 d?
8u(, a3ff dR? ,82 dRdQ?
00
9g a2 1 i) dR 40
Zorro T p R 30"
= 0 (42)
Minimizing “(40c),” with respect to vq gives:
11
_bD 5 1 a3 1 d?
a_uo ?J f ~*|garza0 T FEaor
00
9g[1 @ a 2 a2 R d
%Eﬁ'uo'a(\) ,828(_)2 Q
=0 (43)

Simplifying “(42),”and “(43),”respectively gives the two com-
patibility equations:

0> 1 9% g 0 g 0
[W*EW] et mpagn] =0 @
a2 1 02 g a g d -
_[W +E6—02}+ Eﬁluo +@%UO]— (45)
Solving “(44),” and “(45),” simultaneously gives:
8 d _
Uy = Eﬁ (46)
Ei 47)
T 9B e (
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Substituting “(24),” and “(25),” into “(46),” and “(47),” respec-
tively rearranging gives:

dw? 24 0 18
- gR (48)
aw? 24 0 (19)
Q ~ gaQ
Substituting “(48),”and “(59),” into “(41b),” and simplifying
gives:
d'w 2 d*w 1d'w 3qa* 0 50
o T Eorea Tprags T p T (0)

The ready solution to “(50),”in trigonometric form is: In
trigonometric form, solution to “(40),”is:

1
w=lao o @ ] cof.’cR
sinkR
1
Q
X [bg by Dby bs] cos g0 (51)
sin gQ
In a denotational form “(51)” becomes:
w = a;h, X b;h,, = Ah (52)

Formulas form analyzing rectangular plate with large deflec-
tion

Substituting “(52),” into * (32)
1

AZbDJ'
T 2a8 dRZ
0

gives:

th 1 /d?h\ R
deQ) B_“(d_Qz) ¢

1
A“bgD ah dh\*
36x2a3 f ﬁz aR) (6@)
1 any\* iR d
iz (ao) ¢
— Aabq ﬂ‘ wdR dQ (53a)
In a denotational form, “(53a),” becomes:
Asz 2k k
1= [kbRR ﬁbzf-’-f? + —;ﬁq]
A*bgD 2kmre  Kmoo
+ 72&3 [ mRR ,82 ,84 ]
— Aabq k, (53b)
Where:
11 2 11
d%h
e = [ [ () %00 kono = [ [ (32 ardo
00 00
11 5

a2h 11
o= [ [ () 00 5= [ G om0
00 ] 00

= [ 2

11
6h
dR dQ; Kmgo = J- J dR dQ
0

Mmlmlzmg “(53b),” with respect to coefficient of deflection, A
gives:
oIl  AbD 2kyro Koo
e R e
AgbgD kaRQ kaQ
+—18a3 [kaR + 52 _ﬁ4 —abqk,
=0 (54)

Simplifying and writing “(54),” in denotational form gives:

Al + 58 (k) —"—“k =0 (55)
Where: ka = kbRR +— IE kbRQ + — Iz kaQ;
2
ka = kaR + EkaQ + EkntQQ (56)

Substituting equations for g and D from “(39)” into “(55)” and
dividing through by t gives:
4

(A) k +2(A)3k 121 Z)q(a) k,=0 (57
e) e TG mT o E\; q= (57)
Rearranging “(57)” gives:
Gl TN T ()4k" 0 (58
(7 +2 ()5 -eamg) 7E=0 o
Simplifying “(58)” gives:
A*+0A+ c=0 (59)
A= (D), g2l - LYY Ko
Where: A= (t) 6=5 e =-180—n )E(t) - (60)
Solving “(59),” gives the real root as:
A= 6 x(2/3)43 .
= T [=9c + 372 x [467 + 27c2] 7]
[—9c + 342 x [40° + 27¢2)+/7]"
21/3 X 32/3 (61(1)
A A
A= -4 22 (61b)
A, Dy

Where: A= 8 % (2/3)Y/3; A,

= [—9c¢ + 312 x [40° + 27¢2]/2]%; A

- 21/3 % 32/3
Thus, the coefficient of deflection of plate with large deflection
is:

A=At (62)
Substituting “(62),” into “(52),” gives:
w=Ath (63)

Substituting “(63),” into (29), (30), (34), (35) and (36) and writing
them in terms non-dimensional coordinates gives:
Ar? [ ah A ahz]

u=—/_ == ﬁ + Zﬁ (64)

a
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At oh Adh .
aﬁ[ ao*eaQ] (69)

_ EAP Sazh i 0%h

o =5y o o
any? dh »
() ) ]) e

_ EAt? ¢ d%h 1 d*h

e e
A 0\ dh _
[“( ) 52(50) D (67)

_E(l—,u)AtZ‘ a%h A dhy sah
Y = mae | e T 6( )(ao)]

The load parameter is obtained from “(57),”by making it the
subject (load parameter):
(A/0)°  kur

qsa 4_ (A/f) ka
£ = Bk

12(1-2) k,
For small deflection theorem, the equation of deflection coeffi-
cient parameter, A/t is obtained from “(57),” by considering the
membrane part to be zero. That is:

A q san*
— — — a2y (_ —
(r) kyr —12(1 -1 )E(t) ky=0

Making the deflection coefficient parameter, A/t the subject
gives:

(F) = 2a-02() 7

Similarly, by considering the membrane part of the load param-
eter in “(70)” to be zero, the small theorem load parameter is
obtained as:
2(2)“ _ WO K
E\t 12(1—p?) ky
The parts of “(64),” to “(68),” that contains delta (4 =A/t) are
the membrane parts. Considering them zeros makes them
(equation 64 to 68) to be those of small deflection theory.

(68)

(69)

(70)

(71

(70)

3 NUMERICAL EXAMPLE

Analyze an ssss plate with large deflection that carries uni-
formly distributed load. The Poisson’s ratio and Young’s elastic
modulus of the plate material are 0.316 and 200kN/mm? re-
spectively. Span and thickness of the plate are a = 500mm and t
=5mm. The deflection of the plate is represented in trigonomet-
ric form as:

w = Ah = (SinnR) (SinmQ); h* = (Sin*nR)(Sin*nQ)

Using this deflection function, the following stiffness coeffi-
cients are obtained:

4 4

mt 9*

_;km =—
4 TMRRT 6y

9t 9rr* m* 2 1
ke =g iknan = g hor = {1+ 77+ 7]

kpme = —: k
bRR_q_* bRQ —

Tk
4’ bQQ —

Lot 2 1y ko 16 Ky
= () R T
256 5 8 460.8737
P=—: c=—

A 2 1Y\’ 3’ 2 1
()ﬂ"’(l-l-F‘l'B—t) H6(1+?+F)

a?t k T 2 1\ k,r 97 2 1
E(—) :ﬂz—.(1+—2+—4);—T (1+—2+—4)
E\t k, 16 Bz Bk, 256 g2 B

Values of shape functions and its derivatives at points whose
coordinates are (0.5, 0.5) and (0.25, 0.25) are presented on
Table 1.

Table 1: Values of shape functions and their derivatives

R Q dh/Dr | dh/dQ | dh/dR* | dh/dQr | h/dRAQ | dhy/dR | dh/dQ
05| 05 0 0 9,869 9,869 0 0 0

025| 025 15708 | 15708 | 49348 19348 49348 1.5708 15708
0 0 0 0 0 0 9.869 0 0

4 RESULTS AND DISCUSSIONS

Result from the present study was compared with that from
Samuel Levy as presented on Table 2. The critical deflection
below which the load from small deflection theory is approxi-
mately the same with the load from large deflection theory was
determined using Table 3. The significance percentage differ-
ence between the load parameter from small and large deflec-
tion theories is 4.5%. The critical deflection whose load param-
eter is just less than 4.5% is w/t < 1/3. This is obtained from
Table 3. In-plane displacement along x-axis is presented on
Table 4. This displacement was measured at the coordinate
R=0.25Q=0.25and S = 0.5. Comparison of the displacement
using large and small deflection theories was conducted on the
same Table by simple percentage difference. From Table 4 it
obvious that the small deflection theory overestimates the
x-directed in-plane displacement. As the ratio of deflection to
thickness increases, the percentage difference makes quadratic
increase. On Table 5 is presented the normal stress along
x direction, ox, which was measured at the two different coor-
dinates: first coordinate is at R = 0.5, Q = 0.5 and S = 0.5 and
second coordinate is at R = 0.25, Q = 0.25 and S = 0.5. For the
first coordinate, it can be seen that the difference between the
values from large and small deflection theories is zero for all the
ratios of w/t. This implies that this difference is always zero at
the center of ssss plate. However, the case is not the same at the
second coordinate (0.25, 0.25, 0.5) where it is observed that the
small deflection theory underestimates the normal stress along
x-axis. Quadratic increase in the percentage difference between
the large deflection and small deflection theories is observed as
the ratio of w/t increases. It is pertinent to state here that for all
w/t less than 0.35, the percentage difference is less than 6%.
This implies that small deflection theory can be used at 95%
level of accuracy to estimate the normal stress along x-axis for
a rectangular plate so long as w/t is less than 0.35. From Table
6 it is seen that maximum x-y plane shear stress occurs at the
coordinate: R =0, Q =0 and S = 0.5. That is at the corners of the
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Table 4: X-axis displacement, u of the plate at coordinate (0.25, 0.25, 0.5)

shear stresses predicted by both the large and small deflection LDT SDT
theories is zero for values of w/t ratio. It is also observed that w/t [ u(025,025,05) | u025,025,05) | %Diff
0 0 0 0
5 CONCLUSION 001 | -0.00039 -0.00039 -0.33
Based on the findings herein, it is obvious that for all values w/t 002 | 20.00078 0.00079 067
less than 0.35, most parameters calculated using both large and 00 000 SO0 o
small deflection theories differ in percentage by less than 7%.
Hence, drawing a hypothesis that small deflection theory can 004 | -0.00155 0.00157 1
be used to analyze thin rectangular ssss plate at high accuracy 0.05 | -0.00193 -0.0019 -1.69
level for all cases of w/t less than 0.35. When the value of w/t 01 20.00380 20.00393 345
is more than 0.35, analysis from small deflec’Flon theory shall 015 o000 ) =3
not be reliable. Thus, large deflection theory is recommended
. . 02 | -0.00733 -0.00785 714
for analysis of ssss plate when the value of w/t is up to or more
than 0.35. 025 | -0.00900 -0.00982 -9.09
Table 2: Deflection for given values of load parameter 03 -0.01060 -0.01178 1111
Center deflection, I
qLi/(EbtY) | w/t Prosent Samucl % Ditf 035 | -001214 -0.01374 1321
0 o 0 0 0 04 | -0.01361 -0.01571 15.38
12.1 0.497597 0.498 0.486 239
20.4 0.974384 0.974 0.962 1.29 045 | -0.01502 -0.01767 -17.65
56.9 1.439239 1.430 1.424 1.07 05 | 001636 001963 2000
99.4 1.899036 1.899 1.87 1.55
161 2352629 2353 2307 1.98
247 2.806981 2.807 2.742 237 Table 5: X-axis normal stress, o, (N/mm’) of the plate at coordinates (0.5, 0.5, 0.5) and (0.25, 0.25, 0.3)
358 3.247378 3.247 3.174 231 LDT T LDT spT
497 3.678012 3.678 3.6 217 W/t oi05,05,03) | oi05;05;03) | SDif | 0.025,005,05) | o(025,025,05) | %Diif
Table 3: Load parameter for given values of Deflection 0 0 0 0 0 0 0
for small and large deflection theorems 001 14 144 0 072 072 017
| = 9 : :
w/t AJt EIL_% (Ebtr) ggT/ Ebe) [, oo 002 28 289 0 145 14 033
— — 003 | 43 43 0 218 116 050
o0 0 o0 .000 0.
fwoo £0 , 77 : 9 8 )
0017 | 0017 | 0378 0378 0.00 g ?’ - 0 29 2 066
0033 | 0.033 | 0.735 0.734 0.14 005 ) 71 i ¢ 36t 361 08
0.05 0.05 1114 1113 0.09 01 | us 143 0 73 72 164
0.067 0.067 1.493 1.491 0.13 0.15 .64 21.64 0 11.09 1082 24
0.083 0.083 1.852 1.847 0.27 2 28.86 28.86 0 1491 1443 E
-1 0.1 2233 2225 036 025 | 3607 36,07 0 1879 18.04 400
0.117 0.117 | 2.617 2.603 0.54 - o0 — ! . -
0133 o133 | 2970 5050 068 03 | 529 1329 0 N7 264 76
0.15 015 | 3.366 3.338 0.84 035 | 5030 5050 0 %72 525 551
0.167 0167 | 3.755 3.716 1.05 04 57.72 57.72 0 30.78 2686 625
0183 | 0183 | 4123 +.072 125 045 | 649 493 0 MR 047 6.98
0.2 0.2 4.517 4.450 1.51 - P e . e v e
0217 | 0217 | 4.914 4828 1.78 05 | 71 =2 R 0 :
0233 | 0.233 | 5.290 5184 204
0.25 025 | 5.693 5563 2.34
: XY 35, T (N/mny!) of coordi 5,05,05 25,05, 05
0.267 0.267 6.100 5.041 268 Table b: X-Y plane shear stress, T (N/mm’) of the plate at coordinates (0.3, 0.3, 0.3) and (0.25, 0.25, 0.3}
0.283 0.283 6.486 6.297 3.00 10T SDT LDT SDT
03 03 6.901 6.675 339 wit| 1,000,035 7.0,0,03) aDif | 102502505 1,035,035.05) | D
0.317 0.317 7.319 7.054 3.76 0 0 0 0 0 0 0
0.335 | 0.383 | 7.718 7.410 4.16 0| 07 0750 0 037436 037498 7
0.35 035 | 8146 7.788 1460 e — -
os6r omer | 8570 5166 506 002| -14990 14990 0 Q74747 074997 %
0383 | 0.383 | 8.991 8522 5.50 003 | 2249 22499 0 111933 1124% 030
0.4 0.4 9.434 8.900 6.00 004 29990 29999 0 2148004 2149994 267
0417 | 0417 | 9.884 9.279 6.52 05| A7 37498 0 185% 18749 8
0433 | 0433 | 10312 9.635 7.03 s —— = ——
0.45 045 | 10773 10.013 759 01 | 1497 T y 6875 S 16
0467 | 0.467 | 11.241 10.391 818 015 | -11.2485 112485 0 548416 S6UT7 2%
0484 | 0484 | 11.715 10.769 8.78 02 | -149094 2149994 0 724971 74997 35
]:_eg,end: LD’T: means large deflection theorem; SDT means 05| 1870 18710 0 Q08101 0371 1%
small deflection theorem
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