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Abstract— this paper presents a new, simple and better approach to analyze thin rectangular plates with large deflection. This fit is achieved 

by circumventing the use of Airy's stress function. It was possible to circumvent the Airy’s stress function solving the Von-Karman strain-

displacement equation in closed form. The resulting non-linear strain-deflection equations were substituted into the constative equations to 

obtain the non-linear stress-deflection equations.  These stresses and strains were used to obtain the total potential energy functional of a 

rectangular plate with large deflection. This functional was minimized with respect to displacement to obtain one governing equation and two 

compatibility equations, which were solved to obtain the in-plane displacements in terms of deflection. The energy functional was again 

minimized with respect to the coefficient of deflection to obtain the various formula for analyzing the plate with large deflection. The values 

of load parameters calculated were compared with those obtained by Levy and the recorded maximum percentage difference is 2.39%. This 

validates the present method. From the results, it is concluded that for ratios of deflection-to-thickness (w/t) of the plate less than 0.35 small 

deflection theory can be used with up to 90% accuracy level. When w/t is up to or more than 0.35 large deflection theory is recommended 

for accuracy. 

Index Terms— Airy's stress functions, Von-Karman, strain-displacement, stress-displacement, total potential energy functional, minimize, 

load parameter.   

——————————      —————————— 
NOTATIONS 
A Area of thin plate         
a  Length of the primary dimension of the plate                                
b  Length of the secondary dimension of the plate 
h  Shape (profile) function 
u Displacement of plate in x -direction 
v  Displacement of plate in y –direction 

𝜏�   Shear stress of the plate  
𝜏�𝑥�𝑦�  Shear stress on x-y plane 
Π Total potential energy of the plate 
β Aspect ratio that is,     β = b/a 
R  = x/a  
Q   = y/b 
S   = z/t 

VNX   External axial work 
εxxm  Middle surface strain component in x-direction 
εyym  Middle surface strain component in y-direction 
∆  Deflection coefficient 
𝛾�             Shear strain of the plate  
𝛾�𝑥�𝑦�  Shear strain on x-y plane  
D Flexural rigidity of the plate 
E Young modulus of elasticity of isotropic plate  
S Non dimension axis (quantity) parallel to z axis 
Z Cross section modulus 
𝜀�𝑥�𝑥�  Strain component in x-direction 
𝜀�𝑦�𝑦�  Strain component in y-direction 
M Moment 
R Non dimension axis (quantity) parallel to x axis                 
Q Non dimension axis (quantity) parallel to y axis                
σb  Bending stress 
t  Thickness of the plate 
c1 Unknown constant      
Nx Inplane force of a plate perpendicular to x-direction 
Um Membrane strain energy 
vo Middle surface displacement of plate in y-direction  
q  Lateral load on plate 
σm Membrane stress 
σx Normal stresses acting in x directions  
w Displacement of plate in z-direction 
uo Middle surface displacement of plate in x-direction 
σy  Normal stresses acting in y directions  
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1 INTRODUCTION                                                                     

azdolsky[1] stated it clearly that analytical solution of von 
Karman nonlinear equations is unattainable. This stand is 
corroborated by Zhang et al. [7] and Rezaiee-Pajand and 

Estiri [10]. Von-Karman type of nonlinear strain-displacement 
relation “[9]” governs most works on analyses of rectangular 
plate with large deflection. This Von-Karman type of strain-dis-
placement relation is made of two parts: Linear part (Kirch-
hoff’s strain-displacement, taken herein as bending strain-dis-
placement) and the non-linear part (membrane strain-displace-
ment).  The plane Von-Karman strain-displacements relations 
“[9], [12]” are:  

 
Difficulty encountered in handling the membrane part of the 
Von-Karman strain-displacement constitutes the problem of 
analysis of plates with large deflection. This problem is mainly 
resting on obtaining mathematical expressions for the mem-
brane in-plane displacements u0 and v0. 

Earlier works on analyses of rectangular plate with large deflec-
tion assume expressions for u0 and v0. This makes their final re-
sults not to be taken as exact results [14], [8], [3], [2], [4], [16], 
and [5]. In the process of solving the Von-Karman equations, 
stress function (usually reffered to as Airy’s stress function) is 
used. As in the case of in-plane membrane displacement, earlier 
scholars usually assume expression for the Airy’s stress func-
tion, which renders the results from their approximate [8], [4], 
and [5]. Determination of exact expression for the Airy’s stress 
function seems intractable. However, Oguaghamba [11], Ono-
dagu [13] and Enem [6] in the PhD works determined polyno-
mial expressions for Airy’s stress function. They accomplished 
this fit by integrating the governing equation and compatibility 
equation of the plate. However, the expressions for Airy’s stress 
functions determined by these scholars are quite lengthy and 
encompassing. Mere looking at these expressions can discour-
age an analyst. 
These problems adduced herein is the propelling factor for the 
present research. The tacit for this research is “can Von-Karman 
strain – displacement relations be used in the analysis rectan-
gular plates with large deflection without using or introducing 
Airy’s stress function?” This means circumvention of Airy’s 
stress function in the analysis of rectangular plates with large 

deflection. 
2.1 Membrane in-plane displacements 
The membrane strain –displacement of rectangular plate with 
large deflection is obtained from “(1),” “(2),” and “(3),”. They are 
the terms in the square brackets: numbe: 

 
          

 

 

 

Minimizing “(4),” and “(5),” with respect to�(
𝜕

𝜕𝑥
) and�(

𝜕

𝜕𝑦
)         

respectively gives: 

 

 

 

Rearranging “(6),”and “(7),” gives: 

 

 

 

 

 

The coefficients of u0 and v0 (in equations 8 and 9) that makes 
the membrane strains (equations 4 and 5) zero is   minus half. 
Hence, to avoid zero membrane strains (which violets the basic 
assumption of large deflection theory) other constants that are 
not minus half is used. However, it shall be pertinent to opti-
mize the constant. This optimum value of the constant will en-
able the plate carry loads with its membrane strength when it 
looses its bending strength. This optimum value of the constant 
was obtained by Ibearugbulem [12] in his unpublished class 
note. Following his work, the minus half in “(8),” and “(9),” are 
replaced with unknown constant c1 as: 
 
 
 

Substituting “(7),” and “(8),” into “(4),” and “(5),” gives: 

 

 
 

R 
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 The 

common definition of bending stress is: 
 
 
 
M and Z are moment and cross section modulus (first moment 
of area) respectively. Cross section modulus of a rectangular 
cross section is bt2/6. Where b and t are the width and thickness 
of the section respectively. Substituting this into equation 15 
gives: 

Consider the moment of a continuum by in-plane load and 
deflection shown on Figure 1. 

  
Figure 1:A deflected continuum from inplane force  

From Figure 1, moment is given as: 

 

Substituting equation 17 into equation 16 gives:  

During large deflection, the plate can lose its bending strength 
and rely only on membrane strength. At this point, the entire 

bending stress, b transforms to membrane stress, m. that is 
equation 18 becomes the membrane stress equation: 
 

Membrane strain energy is obtained using the membrane strain 

and membrane stress, “(12),” and “(19),” gives: 

 

 

 

 
That is: 

 At any arbitrary point on the continuum, the external axial 
work is given as:  

Subtracting “(21),” from “(20),” and minimizing the resulting 
functional with respect to deflection (w) gives:  

Substituting “(22),” into “(14),” and rearranging gives: 

 

 
Substituting “(23),” into “(10),” and “(11),” gives:  
  
       

 

 

 

2.2 Displacements and nonlinear kinematics of rectangular 

plates with large deflection 

Substituting “(24)” and “(25)” into “(1)” and“(2)” gives: 
 
 
 
 
 
 
 
 
 
 
Integrating “(26),” and “(27),” with respect to x and y respec-
tively gives: 

 
 

2.3 Constitutive relations of rectangular plates with large              
deflection 
The constitutive relations of a rectangular plate with plane 
stress assumption are: 

Substituting “(26),” “(27),” and “(28),” into “(31),” “(32),” and 
“(33),” gives the stress-deflection relations: 
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2.4 Total potential energy functional of rectangular plate with 
large deflection 

The total potential energy functional of a classical rectangular 
plate in pure bending is given as: 

Substituting the stress-deflection relations “(34),” “(35),” and 
“(36),” and strain-deflection relations “(26),” “(27),” and “(28),” 
into “(37),” and carrying out the closed domain integration with 
respect to z coordinate gives: 

Writing equation 38 in terms of the non-dimensional coordi-
nates (R = x/a and Q = y/b, S = z/t, where: a and b are plate 
lengths along x and y-axes) in closed domain gives: 

Without loss of generality,”(40a)” is rewritten as: 

Substituting “(24),” and “(25),” into “(40b),”gives:  
 

 

2.5 Governing and compatibility equations of rectangular 
plate with large deflection 

Minimization of the total energy functional with respect to de-
flection, w gives the governing equation. Minimizing the total 
energy functional with respect to in-plane displacements u0 and 
v0 gives the compatibility equations along x and y axes respec-
tively. Minimizing equation 40a with respect w gives:  
Rearranging “(41a),” gives the governing equation: 

 
Minimizing “(40c),” with respect to u0 gives:  

Minimizing “(40c),” with respect to v0 gives: 

 Simplifying “(42),”and “(43),”respectively gives the two com-
patibility equations:  

     Solving “(44),” and “(45),” simultaneously gives: 
           
 
 
 

1204

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 11, Issue 3, March-2020                                                                                        
ISSN  
 

IJSER © 2020 

http://www.ijser.org  

Substituting “(24),” and “(25),” into “(46),” and “(47),” respec-
tively rearranging gives:  
 
 
 
 
 
 
Substituting “(48),”and “(59),” into “(41b),” and simplifying 
gives: 
 
 

The ready solution to “(50),”in trigonometric form is: In           
trigonometric form, solution to “(40),”is: 

 

In a denotational form “(51)” becomes:  
 

Formulas form analyzing rectangular plate with large deflec-
tion 

Substituting “(52),” into “(32),” gives: 

 In a denotational form, “(53a),”becomes: 

Where: 

 

Minimizing “(53b),” with respect to coefficient of deflection, A 
gives: 

 
Simplifying and writing “(54),” in denotational form gives: 

 

Substituting equations for g and D from “(39)” into “(55)” and 
dividing through by t gives: 

Rearranging “(57)” gives:  

Simplifying “(58)” gives: 

  

Solving “(59),” gives the real root as: 
 

Thus, the coefficient of deflection of plate with large deflection 
is: 

Substituting “(62),” into “(52),” gives: 

Substituting “(63),” into (29), (30), (34), (35) and (36) and writing 
them in terms non-dimensional coordinates gives: 
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The load parameter is obtained from “(57),”by making it the 
subject (load parameter): 

 
For small deflection theorem, the equation of deflection coeffi-
cient parameter, A/t is obtained from “(57),” by considering the 
membrane part to be zero. That is: 
 

Making the deflection coefficient parameter, A/t the subject 
gives: 
 

Similarly, by considering the membrane part of the load param-
eter in “(70)” to be zero, the small theorem load parameter is 
obtained as: 

The parts of “(64),” to “(68),” that contains delta (𝛥� =A/t) are 
the membrane parts. Considering them zeros makes them 
(equation 64 to 68) to be those of small deflection theory. 

3 NUMERICAL EXAMPLE  
Analyze an ssss plate with large deflection that carries uni-
formly distributed load. The Poisson’s ratio and Young’s elastic 
modulus of the plate material are 0.316 and 200kN/mm2 re-
spectively. Span and thickness of the plate are a = 500mm and t 
= 5mm. The deflection of the plate is represented in trigonomet-
ric form as: 

Using this deflection function, the following stiffness coeffi-
cients are obtained: 

 

 
Values of shape functions and its derivatives at points whose 
coordinates are (0.5, 0.5) and (0.25, 0.25) are presented on           
Table 1. 

 

4 RESULTS AND DISCUSSIONS 
Result from the present study was compared with that from 
Samuel Levy as presented on Table 2. The critical deflection    
below which the load from small deflection theory is approxi-
mately the same with the load from large deflection theory was 
determined using Table 3. The significance percentage differ-
ence between the load parameter from small and large deflec-
tion theories is 4.5%. The critical deflection whose load param-
eter is just less than 4.5% is w/t < 1/3. This is obtained from 
Table 3. In-plane displacement along x-axis is presented on      
Table 4. This displacement was measured at the coordinate         
R = 0.25, Q = 0.25 and S = 0.5. Comparison of the displacement 
using large and small deflection theories was conducted on the 
same Table by simple percentage difference. From Table 4 it           
obvious that the small deflection theory overestimates the           
x-directed in-plane displacement. As the ratio of deflection to 
thickness increases, the percentage difference makes quadratic 
increase. On Table 5 is presented the normal stress along                 
x direction, σx, which was measured at the two different coor-
dinates: first coordinate is at R = 0.5, Q = 0.5 and S = 0.5 and 
second coordinate is at R = 0.25, Q = 0.25 and S = 0.5. For the 
first coordinate, it can be seen that the difference between the 
values from large and small deflection theories is zero for all the 
ratios of w/t. This implies that this difference is always zero at 
the center of ssss plate. However, the case is not the same at the 
second coordinate (0.25, 0.25, 0.5) where it is observed that the 
small deflection theory underestimates the normal stress along 
x-axis. Quadratic increase in the percentage difference between 
the large deflection and small deflection theories is observed as 
the ratio of w/t increases. It is pertinent to state here that for all 
w/t less than 0.35, the percentage difference is less than 6%. 
This implies that small deflection theory can be used at 95% 
level of accuracy to estimate the normal stress along x-axis for 
a rectangular plate so long as w/t is less than 0.35. From Table 
6 it is seen that maximum x-y plane shear stress occurs at the 
coordinate: R = 0, Q = 0 and S = 0.5. That is at the corners of the 
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plate. At this coordinate, the percentage difference between the 
shear stresses predicted by both the large and small deflection 
theories is zero for values of w/t ratio. It is also observed that  

5 CONCLUSION 

Based on the findings herein, it is obvious that for all values w/t 
less than 0.35, most parameters calculated using both large and 
small deflection theories differ in percentage by less than 7%. 
Hence, drawing a hypothesis that small deflection theory can 
be used to analyze thin rectangular ssss plate at high accuracy 
level for all cases of w/t less than 0.35. When the value of w/t 
is more than 0.35, analysis from small deflection theory shall 
not be reliable. Thus, large deflection theory is recommended 
for analysis of ssss plate when the value of w/t is up to or more 
than 0.35.  
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